节点注入对图神经网络(GNN)的攻击已作为一种实际的攻击场景而引起了人们的注意,攻击者会注入恶意节点,而不是修改节点功能或边缘以降低GNN的性能。尽管节点注射攻击最初取得了成功,但我们发现,通过防御方法,可以通过防御方法和限制其在实践中限制其攻击性能,从而很容易将注射的节点与原始正常节点区分开。为了解决上述问题,我们致力于伪装节点注入攻击,即伪装注入恶意节点(结构/属性)是对防御方法似乎合理/不察觉的普通淋巴结。图形数据的非欧亚人性质和缺乏人类的先验性质给伪装上伪装的形式化,实施和评估带来了巨大挑战。在本文中,我们首先提出并制定了从注射节点围绕的自我网络的忠诚度和多样性中注入的节点的伪装。然后,我们为节点注射攻击(即Cana)设计了一个对抗性伪装框架,以改善伪装,同时确保攻击性能。进一步设计了几种用于图形伪装的新型指标,以进行全面的评估。实验结果表明,当将现有的节点注入攻击方法与我们提出的CANA框架配置时,针对防御方法的攻击性能以及节点伪装将显着改善。
translated by 谷歌翻译
我们可以构建一个可解释的面部识别网络,能够学习基于面部的功能,例如眼睛,鼻子,嘴巴等,而无需任何手动注释或添加数据集?在本文中,我们提出了一个通用的可解释的通道损失(ECLOSS)来构建可解释的面部识别网络。经过Ecloss训练的可解释网络可以轻松地学习目标卷积层上基于面部的表示,单个通道可以检测到某个面部部分。我们对数十个数据集的实验表明,Ecloss实现了卓越的解释性指标,同时提高了面部验证的性能而无需面部对齐。此外,我们的可视化结果还说明了拟议的Ecloss的有效性。
translated by 谷歌翻译
图表示学习在许多图挖掘应用中都起着重要作用,但是大规模图的学习嵌入仍然是一个问题。最近的工作试图通过图形摘要提高可扩展性 - 即,他们在较小的摘要图上学习嵌入,然后还原原始图的节点嵌入。但是,所有现有的作品都取决于启发式设计和缺乏理论分析。与现有作品不同,我们根据引入的内核矩阵对三种特定的嵌入学习方法进行了深入的理论分析,并揭示了通过图形摘要的学习嵌入实际上是在配置模型构造的近似图上学习嵌入的嵌入。我们还对近似误差进行了分析。据我们所知,这是对这种方法进行理论分析的第一项工作。此外,我们的分析框架可以解释某些现有方法,并为对此问题的未来工作提供了很好的见解。
translated by 谷歌翻译
立场检测旨在确定文本的作者是否赞成,反对或中立。这项任务的主要挑战是两个方面的:由于不同目标以及缺乏目标的上下文信息而产生的几乎没有学习。现有作品主要通过设计基于注意力的模型或引入嘈杂的外部知识来解决第二期,而第一个问题仍未探索。在本文中,受到预训练的语言模型(PLM)的潜在能力(PLM)的启发,我们建议介绍基于立场检测的及时基于迅速的微调。 PLM可以为目标提供基本的上下文信息,并通过提示启用几次学习。考虑到目标在立场检测任务中的关键作用,我们设计了目标感知的提示并提出了一种新颖的语言。我们的语言器不会将每个标签映射到具体单词,而是将每个标签映射到矢量,并选择最能捕获姿势与目标之间相关性的标签。此外,为了减轻通过单人工提示来处理不同目标的可能缺陷,我们建议将信息从多个提示中学到的信息提炼。实验结果表明,我们提出的模型在全数据和少数场景中的表现出色。
translated by 谷歌翻译
文本匹配是信息检索和自然语言处理的基本技术。文本匹配任务共享确定两个给定文本之间关系的相同范例。这些关系因任务而异,例如〜在文档检索中相关性,释义识别中的语义一致性和所回答的可回答判断。但是,文本匹配的基本信号保留在有限范围中,即〜精确匹配,语义匹配和推理匹配。理想情况下,良好的文本匹配模型可以学会捕获和汇总这些信号,以实现不同的匹配任务以实现竞争性能,而最近的最新文本匹配模型,例如〜预训练的语言模型(PLM)很难概括。这是因为在特定于任务的数据集上的端到端监督学习使模型过分强调了数据示例偏置和特定于任务的信号,而不是基本的匹配信号。为了克服这个问题,我们采用了专业化的将军培训策略,并将其称为比赛推出。在专业阶段,对不同匹配任务的描述映射到一些提示令牌。在概括阶段,匹配模型通过接受各种匹配任务的培训来探索基本匹配信号。高不同的匹配任务避免了模型拟合特定任务的数据偏差,因此该模型可以专注于学习基本匹配信号。同时,在第一步中获得的提示令牌有助于模型区分不同的特定任务匹配信号。公共数据集上的实验结果表明,匹配点可以提高PLM在文本匹配中的多任务概括能力,并产生更好的内域多任务,外域多任务和新任务适应性性能由以前的微调范式训练的特定于任务模型。
translated by 谷歌翻译
在多机器人合作(MRC)系统中部署移动边缘计算(MEC)部署是在能耗和实现延迟方面完成任务的有效方法。然而,需要共同考虑计算和通信资源以充分利用MEC技术所带来的优势。在本文中,研究了多个机器人协作完成时间关键任务的情况,其中智能主机器人(MR)充当边缘服务器,以向多个从机器人(SRS)提供服务,并且SRS负责环境传感和数据收集。为了节省能源并延长系统的函数时间,提出了两种方案,分别优化计算和通信资源。在第一种方案中,SRS的能量消耗最小化和平衡,同时保证在时间约束下完成任务。在第二种方案中,不仅可以消耗能耗,而且认为SRS的剩余能量被认为是增强系统的鲁棒性。通过分析和数值模拟,我们证明即使第一策略可以保证对总SRS能耗的最小化,MRC系统的函数时间比第一个策略更长。
translated by 谷歌翻译
有条件的生成模型旨在学习数据和标签的基础联合分布,以实现有条件的数据生成。其中,辅助分类器生成的对抗网络(AC-GAN)已被广泛使用,但遭受了生成样品的阶层内多样性的问题。本文指出的基本原因是,AC-GAN的分类器是生成器 - 静脉器,因此不能为发电机提供接近联合分布的信息指导,从而最小化条件熵,从而减少了阶级内的阶级。多样性。在这种理解的推动下,我们提出了一个具有辅助判别分类器(ADC-GAN)的新型条件gan,以解决上述问题。具体而言,提出的辅助判别分类器通过识别真实数据的类标签和生成的数据而成为生成器感知。我们的理论分析表明,即使没有原始歧视者,发电机也可以忠实地学习联合分布,从而使拟议的ADC-GAN可靠,可适应该系数超参数的价值和GAN损失的选择,并在训练过程中稳定。关于合成和现实世界数据集的广泛实验结果表明,与基于最新的分类器和基于基于投影的条件gan相比,有条件生成建模中ADC-GAN的优势。
translated by 谷歌翻译
最近,基于转换的自我监督学习已经应用于生成的对抗性网络(GANS),通过引入静止学习环境来缓解争夺者中的灾难性遗忘。然而,现有的自我监督GAN中的单独自我监督任务导致目标不一致,因为它们的自我监督分类器对发电机分配不可知。为了解决这个问题,我们提出了一种新颖的自我监督GaN,通过自我监督通过数据转换增强GaN标签(真实或假),将GaN任务统一了GAN任务。具体地,原始鉴别器和自我监督分类器统一到标签增强的鉴别器中,预测增强标签要知道每个转换下的发电机分配和数据分布,然后提供它们之间的差异以优化发电机。从理论上讲,我们证明了最佳发生器可以收敛以复制实际数据分布。凭经验,我们表明,该方法显着优异地优于先前的自我监督和数据增强GAN在基准数据集中的生成建模和代表学习。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译